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We propose a Lorentz-covariant Yang-Mills spin-gauge theory, where the 
function-valued Dirac matrices play the role of a nonscalar Higgs-field. As 
symmetry group we choose SU(2) x U(1). After symmetry breaking a nonscalar 
Lorentz-covariant Higgs-field gravity appears, which can be interpreted within a 
classical limit as Einstein's metrical theory of gravity, where we restrict ourselves 
in a first step to its linearized version. 

1. INTRODUCTION 

Within the solar system and the binary pulsar PSR 1913 + 16 the 
classical gravitational interaction is described very well by Einstein's gen- 
eral relativity. However, this theory--simultaneously the oldest non-Abe- 
lian gauge theory with the Poincar6 group as gauge g roup- -has  not been 
quantizable. On the other hand, all the other fundamental interactions and 
their unifications are described successfully by quantizable Lorentz-covari- 
ant gauge theories with unitary gauge groupsl Therefore, the suspicion 
exists that Einstein's theory represents only a classical macroscopic descrip- 
tion of  gravity and that the fundamental microscopic gravitational interac- 
tion between elementary particles is also described by a unitary gauge 
group on the Minkowski space-time in such a way that Einstein's theory of  
macroscopic gravity is reached as an effective theory within a certain 
classical limit, similarly as in the strong interaction the nuclear forces 
follow from the quantum chromodynamics. 2 In this way the problem of  
quantization of  gravity and its unification with the other interactions would 
be solvable. 

tPhysics Department, University of Konstanz, Box 5560, M677, Konstanz, Germany. 
2For this general intention see also Stnmpf (1988). 
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In this connection the statement is of interest (Dehnen et al., 1990) 
that the scalar Higgs field of elementary particle physics, the basis of which 
are of course unitary transformation groups, mediates a Lorentz-invariant 
attractive gravitational interaction between those elementary particles 
which become massive by the spontaneous symmetry breaking, i.e., the 
Higgs field has its source only in the mass and acts back only on the mass 
of the particles. The equivalence of inertial and gravitational mass is 
fulfilled automatically within this Higgs gravity. But if the strength of this 
gravity shall be of the order of the Newtonian one, the mass of the gauge 
bosons will be of the order of the Planck mass. 

For the last reason the standard Higgs gravity, e.g., within the 
electroweak interaction (Dehnen and Frommert, 1991), has presumably 
nothing to do with usual gravity. However, here the question arises 
whether Einstein's tensorial gravity may be a consequence of a more 
sophisticated Higgs field, which is especially not a scalar one. 

For this we extend back to a Yang-MiUs SU(2) x (1) spin-gauge 
theory of gravity on the Minkowski space-time of special relativity pro- 
posed by Dehnen et  al. (Dehnen and Ghaboussi, 1985, 1986; see also 
Chisholm and FarweU, 1989). In this theory, where a subgroup of the 
unitary transformations of Dirac's ~-matrices between their different repre- 
sentations [internal spin group (see also Drechsler, 1988; Bade and Jehle, 
1953; cf. also Laporte and Uhlenbeck, 1931; Barut and McEwan, 1984)] is 
gauged, the 7-matrices became function-valued, but remained covariantly 
constant with respect to the internal spin group, whereas the gravitational 
interaction is mediated by the four gauge bosons belonging to the group 
SU(2) x (1) and the classical non-Euclidian metric is constructed out of 
them as an effective field in a certain manner. 

Here a modification in the sense of the Higgs-field gravity is indicated: 
Instead of considering the ~-matrices as covariantly constant, it is possible 
to treat them as true field variables with a Higgs-Lagrange density, 
because also the ~-matrices possess a nontrivial ground state, namely the 
usual constant standard representations. Because the 7-matrices can be 
understood as square root of the metric, the gauge group is that of the 
square root of the metric; moreover, in consequence of this group the 
several spin states (or particle-antiparticle states) are indistinguishable 
with respect to the interaction following from gauging the spin group. Both 
properties suggest that real gravity is involved. 

In this way we get a quantizable unitary spin-gauge theory with 
Dirac's y-matrices as Higgs fields; on this level a unification with all the 
other interactions may be possible. After spontaneous symmetry breaking 
a nonscalar Higgs gravity appears which can be identified in a classical 
limit with Einstein's gravity, where we restrict ourselves in the first step for 
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simplicity to the linear theory. The essential points are the following: the 
theory is from the beginning only Lorentz covariant. After symmetry 
breaking and performing a unitary gauge, the action of the excited y-Higgs 
field on the fermions in the Minkowski space-time is reinterpreted as if 
there would exist non-Euclidian space-time connections and a non- 
Euclidian metric (effective metric), in which the fermions move freely; then 
the deviation from the Minkowski space-time describes classical gravity. 
This happens, as usual, in the de Donder gauge and not in general 
coordinate covariance, which depends also on the fact that with the choice 
of the unitary gauge a gauge fixing is connected. In this way the gravita- 
tional constant is produced only by the symmetry breaking and the 
non-Euclidian metric comes out to be an effective field, whereas the gauge 
bosons get masses of the order of the Planck mass and can be there- 
fore neglected in the low-energy limit; but in the high-energy limit 
( - 1019 GeV) an additional "strong" gravitational interaction exists. Simul- 
taneously, our results give a new light on the role of the Higgs mechanism. 

Finally, we note that, as in the previous spin-gauge theory (Ghaboussi 
et al., 1987) a richer space-time geometrical structure results than only a 
Riemannian one. We find also torsion, which can be neglected, however, in 
the classical limit, and nonmetricity. The question of whether it is possible 
to change the Lagrangian so that nonmetricity does not appear will be 
clarified in a later paper. 

2. T H E  M O D E L  

In the beginning we repeat briefly the foundations of the previous 
work (Dehnen and Ghaboussi, 1986; see also Babu Joseph and Sabir, 1988) 
so far as necessary. Using 4-spinors, it is appropriate to introduce the 
transformation matrices of the group SU(2) • U(1) in their 4 • 4 represen- 
tation (a = 0, 1, 2, 3): 

U .~ e i'za(xu)xa (2.1) 

where the SU(2) generators are given by the Pauli matrices a; as follows 
(i = 1, 2, 3), 3 

l ( o i  Oi) (2.2) 

The U(I) generator ~o may be diagonal and commutes with (2.2); but its 
special form shall be determined only later. Thus the commutator relations 

3The explicit form of (2.2) is only used in (4.7). 
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for the generators t a are 

['C b, t c] = is a (2.3) 

where s bc is the Levi-Civita symbol with the additional property to be zero 
if a, b or c is zero. 

Then the 4-spinor ~b and the Dirac matrices y~ transform as 4 

~b'= U~,  y'~ = Uy~'U -1 (2.4) 

and the covariant spinor derivative reads 

Du~k = (dr, + igo9~)r (2.5) 

(g gauge coupling constant). The gauge potentials c% obey the transforma- 
tion law 5 

, i UI#U_I (2.6) mt, = U~, U-1 +g 

and are connected with the real-valued gauge fields ogua by 

ca n = ~%at ~ (2.7) 

According to (2.4), Dirac's y-matrices become necessarily function- 
valued, in consequence of  which we need determination equations for them; 
as such ones we have chosen in our previous paper in analogy to general 
relativity 

D , y  u = O~y ~' + ig[o)~, 7~] = 0, 7(uyv) = q,v. 1 (2.8) 

[r/uv = qu~ = d iag(+ 1, - 1, - 1, - 1) Minkowski metric]. Because the Y- 
matrices are the formal square root of  the metric, the gauge transforma- 
tions (2.4) are those which are associated with the root of  the metric. 
Therefore the concept described by the formulas (2.1)-(2.7) may have 
something to do with gravity. And indeed, in our previous paper we could 
show that a space-time geometrical interpretation of the theory results in 
an effective non-Euclidian metric given by 

g,~ = (~OltaO)vbq ab (2.9) 

However, the result (2.9) is connected with the condition that the 
gauge potentials e~u~ never vanish and possess a nontrivial ground-state 
representing according to (2.9) in the lowest order the Minkowski metric. 

4y,~ are  tensors with respect to the unitary transformations (2.1), but they are not elements of 
the adjoint representation. 

51# denotes the partial derivative with respect to the coordinate x& 
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This is an unusual feature; furthermore the conditions (2.8) are chosen for 
simplicity. Therefore it may be justified to give up the relations (2.8) and 
(2.9) and to consider Dirac's y-matrices as true field variables with a 
Higgs-Lagrange density, so that the nontrivial ground state can be iden- 
tified with the constant standard representations. It will come out that after 
symmetry breaking the excited 7-Higgs fields mediate a nonscalar Higgs 
gravity, which results finally in Einstein's metrical theory, where instead of 
(2.9) the connection between the effective non-Euclidian metric and the 
7-Higgs field will be deduced from a space-time geometrical interpretation 
of the equation of motion for the 4-momentum of the fermions described 
by the spinor fields ~,. 

3. LAGRANGE DENSITY AND FIELD EQUATIONS 

The translation of the model into a field-theoretic description results in 
a Lagrange density consisting of three minimally coupled Lorentz- and 
gauge-invariant real-valued parts (h = 1, c = 1): 

s = s + ~r 4- s (3.1) 

Beginning with the last part, &o/~(y) belongs to the y-Higgs field and has 
the form 

1 
s = ~ tr[(D ~7.)(D,~7~)1 _ V(y-) - k ( ( N * 2  4- ~ t N ) O  (3.2) 

where 

#2 2 
V(y') = -~- tr(~'~,) + ~ (tr ~ , ) 2  (3.2a) 

is the Higgs potential. Herein ~ denotes from now on the dynamic 
function-valued y-matrices, which obey the transformation law (2.4) and 
the ground states of which are proportional to the constant standard 
representations yu (bear this change of notation in mind). The last term on 
the right-hand side of (3.2) represents the Yukawa coupling term for 
generating the mass of the fermions; this should result from a standard 
isospin-valued scalar Higgs field ~, e.g., from that of the electroweak 
interaction, with the ground-state unit isovector N ( N t N  = 1; ~ is the 
Yukawa coupling matrix). Of course the dynamic parts of this Higgs field 

as well as of the other interactions are neglected in (3.1) and (3.2) 
because we restrict our consideration to the gravitational aspects only. 

At this point one could think of substituting the usual Higgs field ~ by 
the 7-Higgs field. But this leads later to problems in connection with a 
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purely geometrical interpretation of  the forces. Therefore we retain ~ at 
least in the first step. 

The second term on the right-hand side of  (3.1) is that of the gauge 
fields o9~ : 

1 
~F(c~ = 16n FJ'vaF~Vbsab (3.3) 

where s "b is the group metric of SU(2) • U(1) and can be taken here as 6 "b 
(but compare the previous work). The gauge field strengths are defined in 
the usual manner by 

1 
~ = ~g [D r, Dr] = F~,~ ~ (3.4) 

with 

Fl tva  = (1)vail * - -  (.Offal v - - g E a J k O j l t j f D v k  (3.4a) 

The first Lagrangian in (3.1) concerns the fermionic matter fields and 
takes the form [~k is only proportional to the Dirac spinor, see (4.4), but 
can have arbitrary degrees of  isospin freedom]: 

i i 
~e~, (~) = ~ ~;~'D, ~, - ~ ( D , ~ ) ~ ,  (3.5) 

The adjoint spinor ~ is given by 

= ~b*( (3.6) 

wherein ( represents the SU(2) x U(1)-covariant matrix with the property 

(~'~7.)t = ~]7~ (3.7) 

In view of the commutability of  covariant derivative and multiplication 
with ~ in (3.5) it is further necessary that 

= 0 ( 3 . 8 )  

So long as (see Section 4) 

[yo, ~.] = 0 (3 .9)  

equations (3.7) and (3.8) will be fulfilled only (up to a constant factor) by 

= 70 ((t = (, (2 = 1) (3.10) 

so that (3.6) yields as usual r = $t70. Because of  (3.9) the matrix ( is not 
only eovariant, but even invariant under gauge transformations. These 
results depend essentially on the relation (3.9), which may be not valid in 
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a larger group [e.g., U(4)]. 6 Finally we note that one can prove easily with 
the use of (4.8) that all three expressions (3.2), (3.3), and (3.5) of the 
Lagrangian are real-valued and contain no dimensional parameter with 
exception of k and #2 in (3.2), which have the dimension of a mass 
squared. 

The field equations following from the action principle associated with 
(3.1) are given by the generalized Dirac equation 

i~'Ou~k + 2 (Du~')~b - k(Nt2 + 2tN)t~ = 0 (3.11) 

as well as its adjoint equation, by the inhomogeneous Yang-Mills  equation 

avFVU,, + gc, bCF~bUOJvc = 4~j~ u (3.12) 

with the gauge currents 

g 
ja u =j~U(~k) +j~(7) = ~ ~7{~7", Za }r + ig tr([~7 ~, z,,]DU~) (3.12a) 

belonging to the matter and the Higgs field, respectively, and by the 
y-Higgs field equation: 7 

" I ~2 = 7 s D~D~ffuas - 2 [~s. (DUr _ (DU~b)s. ~a] + L#2 + tr(~7 ~7~)[~7~ = 0 
. . I  

(3.13) 

Herein the lower capital Latin index A and the upper index B denote the 
contragradiently transformed rows and columns of the spinorial matrices, 
respectively. The homogeneous Yang-Mills  equation following from the 
Jacobi identity reads 

Oo, Fv,q,, + gogkt~F~,~l~.EkJa = 0 (3.14) 

Finally we note the conservation laws valid modulo the field equa- 
tions. First, from (3.12) the gauge current conservation follows immedi- 
ately: 

O~'( f l ' '+ g r bcovc)=O (3.15) 

6A generalization of the theory to the full gauge group U(4) is in preparation (see also 
Drechsler (1988)). 

7If ~u is considered to be traceless [see (4.2) and (4.8)], then also the traceless version of (3.13) 
is valid only. 
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Second, the energy-momentum law takes the form 

~gvTu ~ = 0 (3.16) 

where Tu v is the gauge-invariant canonical energy-momentum tensor con- 
sisting of three parts corresponding to (3.1) 

T.v= Tr~(~k) + TrY(co) + TRY(7) (3.17) 

with (modulo Dirac equation) 

i 
Tr ~(0) = ~ [f~ Dr r  (Dr 0)7 ~0] (3.18a) 

TS(~ Fr~aF . . . .  F~tJF~tJ8; (3.18b) 

TS(~,, ) = tr[(D~7~)(D, fa)] 

-2/~2 ~(tr2 ~7~7~)2 } (3.18c) 61 [2 tr[(D~Ya)(D~7# )] - tr(~7~7~) - 

Because of the Yukawa coupling term in (3.2), the trace of (3.18a) does not 
vanish. With the use of the Dirac equation (3.11) and its adjoint equation 
one finds 

Trr(~, ) = k~[N*2 + 2*N]O (3.19) 

where the bracket represents the fermionic mass matrix. 
By insertion of (3.18) into (3.17) one obtains from (3.16) the equation 

of motion for the fermions. After substitution of the second covariant 
derivatives of the ~-Higgs field using the field equation (3.13), one finds 
with the help of the Yang-Mills equations (3.12) and (3.14) 

O~ Tr~(O) = - 2  [(7(Dr~)(D'~b) - (]9~0)(DrY~')0] + rr'~J'a(tP) (3.20) 

Integration over the spacelike hypersurface t = const and neglect of surface 
integrals in the spacelike infinity yield the momentum law for the 4-momen- 
tum pr = S Tr~ o) d3x of the fermions. On the right-hand side of (3.20) one 
recognizes the Lorentz forces of the gauge fields and the force of the 
y-Higgs field. 

We finish with two remarks. First, the energy-momentum tensor 
TrY(y), equation (3.18c), does not vanish for the ground state [see (4.2)], 
but has the value 

(o) (o) 3 ].~ 4 
TrV(Y) = 2 2 t~r~ (3.21) 

However, this can be renormalized to zero by changing the Higgs potential 
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(3.2a) correspondingly; otherwise (3.21) will give rise within the complete 
theory to a cosmological constant. Second, the y-Higgs field equation 
(3.13) contains as source for ~7 ~ the fermionic energy-momentum tensor 
T,~(~h) in its spinor valued form; and in this form it appears also in the 
y-Higgs field force of (3.20). This fact confirms the supposition that the 
y-Higgs field equation results in Einstein's field equation of gravitation (for 
the fermions) after a space-time geometrical interpretation of the y-Higgs 
field forces in (3.20) defining the effective space-time geometrical connec- 
tion coefficients. 

4. S P O N T A N E O U S  SYMMETRY BREAKING 

Although one can recognize the gravitational structure already in 
equations (3.13) and (3.20), the space-time geometrical interpretation is 
only possible after symmetry breaking. The minimum of the energy- 
momentum tensor (3.18) in the absence of matter and gauge fields is 
reached when the Higgs potential (3.2a) is in its minimum defined by 

/(o) (o) \ 
tr ~ 7 " y , )  = 6/~2 = v: 2 (/~: < 0) (4.1) 

The ground-state ((~ of the y-Higgs field must be proportional to the 
(constant) Dirac standard representation y', i.e., s 

Insertion into (4.1) results, because of {y', yv} = 2q,v. 1 in b = v/4, so that 
we have for the ground state 

(~),u .= 1) 
-~ ~'u (4.2) 

Here the Lagrange density (3.5) for the spinorial matter fields reads, 
considering the y-Higgs field ground state only, 

i v 
-~ qY-~ y~0~h + h.c. (4.3) 

Comparison with the usual Dirac Lagrangian (i/2)~DmTUO,~ODIR results in 
(~hDm Dirac spinor) 

~k = 2 ~  ~bD~ R (4.4) 

sOf course, global unitary transformations between the different standard representations and 
simultaneously of the generators are allowed. 
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Here the fermionic mass term in (3.2), identical with the trace (3.19) of  the 
energy-momentum tensor T j ( ~ ) ,  takes the form 

Tff '(~bom ) = ~Omrh~kOiR (4.5) 

with the mass matrix 

4k 
rfi = m ( N * ~  + ~*N), m = - -  (4.5a) 

/) 

On the other hand, the Higgs-field gauge current j~(~) gives rise after 
symmetry breaking to the mass of  the gauge bosons 0~a u. In the lowest order 
we find from (3.12a) with the use of  (4.2) 

.# 0 2 .ub 2 11-2 pv~ 
- - 4 ~ J a ( ~ )  = Mab~ , Mab . . . .  ~b 'tp~ 

(4.6) 
M2 pv 7z _2. 2 ab = - - -~S '~ tr([Ta, ~'q[Tb, ~'q) 

Here it is convenient to choose the U(1) generator explicitly. I f  we take the 
unit matrix, the gauge boson r remains massless of  course (rest symme- 
try) and must be taken into account also in the low-energy limit. In order 
to avoid thisfl the only other possibility is the choice zo l 0 = 57 . Doing this, 
we obtain from (4.6) with the use of  (2.2) the diagonal mass matrix for the 
gauge bosons: 

Mo20 = 3 / r g 2 v  2 

(4.7) 
M~ = 27zg2vEt~/j 

and zero otherwise. As we will see later, the value of (4.7) is of  the order 
of  the square of  the Planck mass ( ~ 1019 GeV). 

As one can prove easily, the general Higgs field ~7, can be represented 
by 

7"(x*') = h~',~(xOU(~)~U - l (4.8) 

so that it can be reduced within the unitary gauge as usual to the ground 
state (4.2) in the following way: 

~ ( x  ~) = h~(x~)(~ )~ (4.8a) 

where l0 

h~';.(x v) = 6~'z + e~',~(x ~) (4.8b) 

9It seems to us not suitable to identify this boson with the photon, in view of the electroweak 
interaction. 

1~ and lowering of indices is performed always with t/~ and t/,z, respectively. 
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and e~'x(x ~) describes the deviations from the ground state, i.e., the excited 
Higgs field. Here we are able to write down all field equations after 
symmetry breaking exactly in a non-matrix-valued form. Of course, the 
Lorentz-tensor h~'~(x v) looks like a tetrad field, but its determination and 
connection with the effective non-Euclidian metric follow only from the 
7-Higgs field equation after symmetry breaking. 

5. FIELD EQUATIONS AFTER SYMMETRY BREAKING AND 
GRAVITATIONAL INTERACTION 

In this section we restrict ourselves in a first step for simplicity to the 
linearized theory, i.e., le'a[ << 1 (weak-field limit). We start in view of the 
gravitational aspect with the Higgs field equation (3.13). Going over from 
a spinorial description to a Lorentz-tensorial equation, we multiply (3.13) 
at first by y~B a. Then after insertion of (4.2), (4.4), (4.8a), and (4.8b) we 
obtain, linearized in e'~ under neglect of the gauge-boson interaction 
because of (4.7) (low-energy limit) 

/~2 ,~ 4 
- T = ( 5 . 1 )  

where 

i 
T#2(~/DIR) ----- "~ [IffDIR~2D#~DIR -- (D#~'Dm)y~kDm] (5.1a) 

is the usual (canonical) Dirac energy-momentum tensor. Obviously the 
antisymmetric and the traceless symmetry part of e "z remain massless, 
whereas the trace e = e~b/~ possesses the Higgs mass: 

M = ( --2bt 2) I/2 (5.1b) 

Furthermore, if (5.1) is to describe usual gravity, v 2 ~ G  -~ (G is the 
Newtonian gravitational constant) must be valid, so that (4.7) is indeed of 
the order of the square of the Planck mass Mvl  = 1 / x / ~ .  

Before comparing (5.1) with Einstein's field equations it is appropriate 
to interpret first the Higgs field forces in (3.20) geometrically, where in the 
low-energy limit the Lorentz forces of the gauge fields can be neglected. 
Insertion of (4.2), (4.4), (4.8a), and (4.8b) into (3.20) gives with respect to 
(3.18a) and (5.1a) 

�9 a,T~'V(~krgm) = - ~ v e v p T ~ ' V ( ~ o m )  - d~'ewTVV(~Dm) (5.2) 

linearized with regard to e'z. The equations (5.1) and (5.2) describe the 
y-Higgs field interaction in its linearized version, which is obviously very 
similar to that of general relativity. 
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Now, the comparison of  (5.2) with the energy-momentum law of a 
classical affine geometrical theory with the affine connections F~vp 

D ~r) Tl,V = 0 ~ (3~ T "~ = -- F~p T ~'p - FUvp T p~ (5.3) 

results in the identification 

F" w = a'E,~ ; FV~p = avE~, (5.4) 

These two relations are only compatible if 

0 vEtpv] = FVtwl = 0 =~ (~r = ~ ve(pv) (5.4a) 

is valid. Here the forces of  the excited 7-Higgs field on the fermions in the 
Minkowski space-time are reinterpreted as the action of non-Euclidian 
space-time geometrical connections. 

Consequently, in the space-time geometrical limit the excited Higgs 
field eu~, or more precisely its derivatives, play effectively the role of  affine 
connections (effective connections). Their field equations are obtained in 
the following way: With the identity (5.4) the equations (5.1) take the form, 
assuming a negligible Higgs mass (5.1b), 

0~3~e(uv) = 0~ F~(u~) = ~ T(~)(~kDIR) (5.5a) 

and 

In the lowest order, which is considered here only, the right-hand sides of 
(5.5) possess in view of (5.2) vanishing divergences. Therefore the following 
constraints hold in consequence of  the field equations: 

(3 vE(~)=0"~ (5.6a) 
(3~E~v = 0 

0~E~] O J" (5.6b) 

the second of  which guarantees the fulfillment of  the compatibility condi- 
tion (5.4a). 

Evidently the field equation (5.5b) represents the equat ion  of  the 
effective torsion. Its source is the antisymmetric part of  the fermionic 
energy-momentum tensor (5.1a), which can be written with the use of  the 
Dirac equation in the lowest order: 

1 ~ 
T~,](~D,R) = ~ [ ~ i ~ v ]  D~DIR + (D~ ,~ )~  ~ ] ~ ]  (5.7) 

where a ~ = i7~ ~1 is the spin operator. In consequence of  this the torsion 
has its origin in the fermionic spin density (cf. also Hehl, 1973, 1974). 
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Therefore, if we neglect in the classical macroscopic limit all spin influences, 
the solution of (5.5b) is 

et~v I = 0, F~0~vl ~ 0 (5.8) 

whereby the compatibility condition (5.4a) is fulfilled identically. 
For discussion of the field equation (5.5a) for the symmetric part of 

the effective connections we compare directly with Einstein's linearized field 
equations of gravity. Setting 

g~v = quv + ?~ (5.9) 

and choosing the de Donder gauge 

O ~(7~ 1 -  ~ yr/.,~ ) = 0  (5.9a) 

(? = Vu~v/uv), we find that 

1 
~ ~ ( 7 ~ -  ~,~/~)=-8~zGT~,v)  (5.10) 

The comparison with (5.5a) results immediately in 

= - e  (5.11) 
2 (  1 ) 7 ~ 

= _ _  eo~, ) -- ~ ev/u v Yu~ 

and 

v = ( 2 ~ G )  - 1/2 (5.12) 

up to the proportional constant ~. Consequently the constraint (5.6a) is 
identical with the de Donder condition (5.9a) and Newton's gravitational 
constant G is correlated, as expected, with the Higgs-field ground-state 
value v. The constant ~ is adjusted in such a way that the equation of 
motion (5.2) goes over in the lowest order into the Newtonian gravitational 
law; for this 

1 
Co0 = - ~  =~ 0~=~ (5.12a) 

(~  is the Newtonian gravitational potential) must be valid in view of (5.1 l) 
with ?uv = 2~diag(1,  1, 1, 1) according to (5.10). Here the effective non- 
Euclidian metric takes the form with respect to (5.9) 

guy = quv ( 1 + 2c) -- 4e(uv) (5.13) 
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For analyzing the symmetric connections F(~v) after the identification 
(5.11) we calculate the linearized Christoffel symbol {~v} belonging to the 
metric (5.13); we find linearized in Ez~ 

0~ �9 1 

Because of 

F~v = F~(u~) = 0~E(~) (5.15) 

[see (5.4) and (5.8)] the nonmetricity tensor Q~,~ belonging to (5.13) reads 
(also linearized in Euv) 

Quiz = -D~r~g~ = -O~,gv~ + r~g~z + r~zg~ 

=40~, E(~,~)-~er/,,l +O~E(~,,~)+c~,~e(~,~) (5.16) 

With (5.15) and (5.16) equation (5.14) can be written as 

F~u~ = + ~ I ~ ( Q u ~  ~ + Q~,~ - Q~,~) (5.17) 

which is exactly the form of the (linearized) symmetric affine connection 
(see Schouten, 1954) in the torsion-free case [cf. (5.8)]. Obviously the 
spin-gauge theory of gravity possesses in its classical macroscopic limit a 
larger geometrical structure than only the Riemannian one: Besides the 
Christoffel connection, also nonmetricity exists. 

In relation to this fact the field equations for both connection co- 
efficients are of interest. Because of the identification of (5.5a) and (5.10) 
Einstein's field equations are to be expected for the Christoffel symbols. 
For the trace of the Christoffel symbols we obtain from (5.14) without any 
condition 

{ a }=2Elu/~ (5.18) 

On the other hand, it follows from (5.14) with the use of the constraint 
(5.6a) that 

O~c~E(u,) = -~ O~ #v - elul~ + 2 d~d~ er/,, (5.19) 

Here the second term on the right side can be substituted by (5.18) and the 
third term by the trace of (5.5a), giving 

O,O'e = 4 T(ODm) (5.20) 
t)-  
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Doing this and substituting the left-hand side of  (5.5a) by (5.19) yields 

, ] 
]~V ~ = = ~-~ T0tv)(~/DIR) -- ~ T(II/DIR)?I/~v (5.21) 

(Ru, is the Ricci tensor). This is indeed together with (5.12) Einstein's 
linearized field equation for the Christoffel symbols belonging to the metric 
(5.13). 

For investigation of the nonmetricity part of the affine connections 
(5.17) we insert (5.16) and take the divergence; thus with the use of  (5.6a) 
we obtain 

1 
~ ~ r/~(Q,,~ + Qv,a - Qz,v) = -2el,Iv - ~d~(eo~,) - a/~v) (5.22) 

or in correspondence with (5.21) 

1 ~ 1 ~.~ 
a~ ~ ~ (Q.v~ + Qv.~ - Q~.,) - a, ~ ~ (Q.~ + Q~.~ - Q ~ )  

= -O~O~(e(~,) - eq,,) = - ~  (r~, - rt/~v) (5.23) 

where (5.5a) is used. The practical consequences of the appearance Of 
nonmetricity or even better its avoidance shall be investigated later. 

Now we note the Dirac equation for gravitational interaction accord- 
ing to the spin-gauge theory as well as the Yang-Mil ls  equation for the 
very massive gauge fields. From (3.11) it follows immediately after inser- 
tion of  (4.2), (4.4), (4.5a), and (4.8a) under neglect of  the gauge-boson/ 
graviton interaction (linearizing of the interaction terms) 

[ , ] 
g ^ 

- 2  c~ Y"]~kDIR -- m~b~ = 0 (5.24) 

Here e "~ is defined by (5.1), from which we obtain in the lowest order [see 
(5.2)] and for a sufficiently small Higgs mass (5.1b) [cf. also (5.6)] 

d'~e~,,~ = 0 = ~;~e,~, = 2~;'et:,, J (5.25) 

Here equation-(5.24) takes the final form 

g 
i7~'a.~/D,R + i[ea.az + (~ Z~ta/,I)]y*'~/D~ R -- -~ C0.,, {Z~, 7/'}@Din -- rh~kom = 0 

(5.26) 

where the second term describes the gravitational interaction [in the 
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classical macroscopic limit, cf. (5.8), or already because of  (5.6b) the term 
O~et,~,l vanishes]; the third term represents the interaction with the very 
massive [cf. (4.7)] gauge bosons. 

In its nonrelativistic limit equation (5.26) goes over into the 
Schr6dinger equation with usual Newtonian gravitational potential. Con- 
sidering the gravitational field as a classical one, equation (5.26) takes the 
simple form 

i~)~g~/DIR - -  r n ~ / D I R  = 0 ,  ~,u = 0U + EXU0X (5.27) 

under neglect of  the gauge-boson interaction. Iteration of (5.27), elimina- 
tion of all spin influences, and linearization in U', give with the use of 
(5.25) 11 

n~/2C 2 
(~#~/~ -]- 2s -]- - - ~  ~/DIR = 0 (5.28) 

With the ansatz ( th2~ m 2) 

~kDig = e -i(m:/h)tcp(X v) (5.29) 

we obtain from (5.28) under the neglect of  all terms up to the order of  
c - l(E(vu) ~ C -2) the Schr6dinger equation: 

h 2 h 
2---m Acp + mc2E.(~ = ~ dt~p (5.30) 

with c (~176 -- -C~/c 2 according to (5.12a), i.e., the usual Schr6dinger equa- 
tion with classical gravitational potential q). 

We have shown this explicitly, because this quantum mechanical 
equation has been tested experimentally until now only for the gravitational 
interaction by the neutron-interference experiment of Collela et al. (1975). 
It may be of  interest, however, that the Schr6dinger equation (5.30) does not 
guarantee that atomic clocks and lengths measure the effective non- 
Euclidian metric; for this the influence of the gravitational field on the elec- 
tric Coulomb potential between electron and nucleus of the atom is neces- 
sary (see, e.g., Papapetrou, 1956), which is not yet included in our theory. 

Finally, for the inhomogeneous Yang-Mills  equation we obtain from 
(3.12) and (3.12a) with the use of  (4.2), (4.4), (4.6), and (4.8a) 

~..- L, f2 pvr,.~gtb OvFW~a + g(-abCFV'bC-'Ovc + M2ab cO'ub + "r ~'~ ab w 

= 4~ -~ ~;Dm {7 ~, Ta }0DIR(6"~ + E"X) + ig ~-~ (a~E0v) tr([y ~ ~a]7 ~) 

(5.31) 

l lWe use h and c explicitly because of the ordering with respect to c-1, 
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where we have restricted ourselves also to linearized interaction terms with 
respect to gravitation. On the left-hand side we recognize the mass term 
and the interaction of the massive bosons with the gravitational potentials; 
on the right-hand side we find as sources gravitationally influenced Dirac 
gauge currents and a current associated with the gravitational field itself 
(remaining Higgs-field current). Because of this it may be justified to call 
the gauge-boson interaction as a "strong" but very massive gravitational 
interaction; its coupling constant g remains, however, undetermined within 
our present theoretical approach. 

6. FINAL REMARKS 

In extension of a previous spin-gauge theory of gravity we have shown 
that Dirac's v-matrices can be treated as a quantizable Higgs field, in 
consequence of which Einstein's metrical theory of gravitation follows as 
the classical macroscopic limit of the Higgs-field interaction after symmetry 
breaking. 

In spite of this success there are several problems for the future. First, 
not only is the effective space-time geometrical structure a Riemannian one, 
but also nonmetricity is present, which should be suppressed in the next 
step since no observational hint for it exists. This may be possible because 
the Lagrange density (3.2) for the Higgs field is not yet unique but can be 
supplemented in its kinetic term, e.g., by tr[(D~U)(D~)]. In connection 
with this it may also be attainable to avoid the constraint (5.6), which 
corresponds to the de Donder condition, and perhaps in this way Einstein's 
theory can be reached even exactly and not only in its linearized version as 
presented above. 

Furthermore the theory, as it stands, contains only the gravitational 
interaction between the fermions. But the gravitational interaction with all 
bosons must be included within a complete and consistent theory of 
gravitation; otherwise, as remarked above (cf. Papapetrou, 1956), atomic 
clocks and lengths do not measure the non-Euclidian effective metric. This 
may require, however, a unification with the other interactions on the 
microscopic level of unitary phase-gauge transformations within a high- 
dimensional (e.g., eight-dimensional) spin-isospin space. 

In this respect one could have a bold idea: Because in our theory the 
?-matrices are treated as a Higgs field, it could be possible to introduce the 
chiral asymmetry of the fermions with regard to the weak interaction, 
which is, however, present already in the SU(5) GUT, by a special choice 
of the ground state of the ?-Higgs field in the course of the spontaneous 
symmetry breaking at approximately 1019 GeV connected with the gravita- 
tional interaction. 
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